Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1715405

RESUMEN

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glutatión/análogos & derivados , Hesperidina/uso terapéutico , Lactoilglutatión Liasa/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Resveratrol/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Quimioterapia Combinada , Inducción Enzimática/efectos de los fármacos , Glutatión/química , Glutatión/uso terapéutico , Glicosilación/efectos de los fármacos , Hesperidina/química , Humanos , Resistencia a la Insulina/fisiología , Lactoilglutatión Liasa/antagonistas & inhibidores , Ratones , Estructura Molecular , Neoplasias Experimentales/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/fisiopatología , Piruvaldehído/química , Piruvaldehído/metabolismo , Resveratrol/química
2.
Infect Disord Drug Targets ; 21(4): 608-618, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-688766

RESUMEN

BACKGROUND: COVID-19 is a life-threatening novel corona viral infection to our civilization and spreading rapidly. Tremendousefforts have been made by the researchers to search for a drug to control SARS-CoV-2. METHODS: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. RESULTS: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/- mol) was revealed to be the most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-- CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV-2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also performs the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). CONCLUSION: In the host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease, which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast in-vitro to in-vivo analysis towards the development of therapeutics against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Arsenicales , Glutatión , SARS-CoV-2/efectos de los fármacos , Arsenicales/farmacología , COVID-19 , Simulación por Computador , Glutatión/análogos & derivados , Glutatión/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA